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We propose a fast and real-time interactive method to reconstruct a seismic horizon with respect to a set of
picked input points. The reconstruction domain is subdivided in quadrilateral domains which are determined
from input points while the entire horizon is obtained part-by-part by juxtaposing independent partial re-
constructions. Each quadrilateral domain is mapped onto a rectangular domain on which a non-linear partial
derivative equation relied on local dip is solved by an iterative process based on a Poisson equation. The key
point is the transformation of the local dip which allows the carrying out of a direct Fourier method with a
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1. Introduction

Seismic horizon reconstruction has become a leading method to im-
prove seismic data interpretation and to understand geological processes.
A seismic horizon is a hypersurface of a seismic image which delimits geo-
logical layers. Many recent numerical frameworks have been dedicated to
the reconstruction of a unique horizon (Bienati and Spagnolini, 1998;
Blinov and Petrou, 2005; Lomask and Guitton, 2006; Lomask et al,
2006; Zinck et al., 2011) as well as to the jointed reconstruction of a set
of horizons (Fomel, 2010; Ligtenberg et al., 2006; Parks, 2010). Applica-
tion scopes cover various domains, like flattening (Lomask and Guitton,
2006; Parks, 2010), geological model building and reservoir characteriza-
tion (Hoyes and Cheret, 2011) or chrono-stratigraphic interpretation
(Donias et al., 2001; Pauget et al., 2009).

Here we focus on the reconstruction of one horizon by taking into
account picked points. In case of a unique point, an efficient method
proposed by (Lomask et al., 2006) is based on a two-dimensional
(2-D) non-linear partial derivative equation (PDE) relied on a local
dip. The PDE is solved using a Gauss-Newton approach by an iterative
algorithm whose crucial step is the resolution of a Poisson equation.
The extension of the method to several points by Lomask and Guitton
(2006) has a computational cost which is often prohibitive for large
data volume. Firstly, fast algorithms to solve the Poisson equation are
irrelevant. Secondly, a reestimation of the entire horizon is required
when adding or displacing a point. Moreover, this global method has
to be initialized with a horizon close to the solution.
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In this paper, we present an alternative local method to reconstruct
a horizon with respect to a set of picked input points. Based on Lomask's
iterative algorithm (2006), the approach consists in a part-by-part re-
construction. The reconstruction domain is subdivided in areas
on which parts of the horizon are reconstructed independently from
each other while the entire horizon is obtained by juxtaposing all
reconstructed parts. The approach leads to a fast and interactive
reconstruction even though it is naturally suboptimal. Indeed, fast
algorithms are used to solve the Poisson equation while a real-time
partial (or incremental) reestimation can be carried out: only the
subdomains connected to an added or displaced point need to be
recalculated. The continuity of the parts of the horizon is ensured by
fixing the same values on the boundaries shared by neighboring
subdomains. Moreover, fixing values on all boundaries limits the largest
reconstruction domain to the convex envelope of the input points.

In the case of a 2-D domain, according to Hockney (1965), a fast
reconstruction can be performed on a rectangle. In the following sec-
tions, we focus on a new fast reconstruction method for domains
diffeomorphic to a rectangle and here called pseudo-rectangular do-
mains. Each pseudo-rectangular domain is mapped onto a rectangular
domain through a geometrical transformation. Instead of modifying
the Poisson equation as described in standard methods (Bellman and
Casti, 1971; Zhong and He, 1998), the key point of our approach is the
transformation of the local dip. The Poisson equation is therefore solved
by a direct Fourier method which guarantees a low computational cost.

It can be noted that our approach is valid outside the seismic appli-
cation scope to reconstruct explicit surfaces of finite-dimensional vector
spaces such as fibrous composite images. Moreover, the local dip trans-
formation can be extended to reconstruct implicit surfaces of finite-
dimensional vector spaces (Zinck et al., 2012).

This article is organized as follows: Section 2 introduces Lomask's
horizon reconstruction algorithm, Section 3 deals with the new fast
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reconstruction method on pseudo-rectangular domains while the two
last sections respectively describe the part-by-part horizon reconstruc-
tion approach and exhibit results.

2. Horizon reconstruction algorithm

A seismic horizon can be considered as a curved segment in a
two-dimensional space or as a surface in a three-dimensional (3-D)
space and is represented by a function f defined on a domain Q. The
function f is connected (Lomask et al., 2006) to the tangent p of the
local dip' by a PDE:

VXEQ, V() = p(x f(X), M

where V denotes the gradient operator. In a 2-D (resp. 3-D) space, x
denotes a one-dimensional (1-D) variable x (resp. a two-dimensional
variable (x;, x2)) while the local dip is a known one (resp. two)-
dimensional vector giving the slope of the horizon tangent line
(resp. plane) compared to the space axis X (resp. X; and X,). The
functions f and p are respectively considered of class C* and C'.

The horizon is obtained by solving a constrained optimization
problem:

f=arg mm/dwmm—anmm%x )

geC?

assuming that either the horizon boundary or points belonging to the
horizon are known. Eq. (2) is non-linear, thus an iterative algorithm is
used to solve it (Lomask et al., 2006). The horizon is initialized with a
function fy and the iterative step is made of three parts: residual com-
putation, update term computation and updating.

* Residual computation:

VXEQ, 1(X) = Vi) =p(X, fr(x)) 3)

* Update term computation:

8f, — arg min / IVg(x) + 1 (x)]2dx. 4)
gEC2 Q

The solution of Eq. (4) is obtained by solving a Poisson equation
A(6fy) = — div(ry), (5)

where A denotes the Laplace operator and div is the divergence operator.
Eq. (5) is associated with conditions on a subdomain Q; of Q:

YV x€Q, 6fo(x) = f(X)—fo(X) (6)
and &6fy(x)=0 V k>0.

If the horizon boundary is known, the subdomain (); corresponds
to the boundary 0Q of €. The problem defined by Egs. (5) and (6) is
then called boundary problem. If one or several points belonging to
the horizon are known, the subdomain (); corresponds to the union
set of all known points. The problem defined by Egs. (5) and (6) is
then called “inner” problem.

* Updating:

vV xe Q~, fk+1 (X) = fk(x) + 6fk(x)~ (7)

! The tangent p is previously computed over the entire seismic data by estimating
the gradient field. A principal component analysis (Marfurt, 2006) is used in our meth-
od while a plane-wave destruction algorithm (Fomel, 2002) is applied in the imple-
mentation of Lomask et al. (2006).

Usual stopping criteria consider the norm of the residual (Lomask
et al., 2006). Moreover, a maximal number K of iterations is generally
fixed to ensure the algorithm stopping.

The ability to compute the update term determines the computa-
tional efficiency of the reconstruction method. On a 1-D domain and a
2-D rectangular domain, fast Fourier algorithms (Hockney, 1965) can
be applied to solve boundary problems. The update term is computed
in one step:

FT[— div(rk)]} 8)

5fk:Fr71|: FT[A]

where FT and FT™! denote respectively the Fourier transform and the
inverse Fourier transform. If a unique point belonging to the horizon
is known with coordinates (x”, f(x")), fast algorithms can also be used
by replacing condition (6) on the value of 6f, at the known point by
an equivalent condition on the mean value of &fy:

V k=0, <of> :/stk(x)dx
() -5(0)

The problem defined by Eqgs. (5) and (9) is then called mean problem.
However, the Fourier algorithms cannot be carried out to solve the inner
problem for several known points on the aforementioned domains.
Iterative methods like descent direction approaches and relaxation algo-
rithms are therefore proposed in the literature (Polyanin, 2002). On 2-D
non-rectangular domains, excepted on a disk (Swarztrauber and Sweet,
1973), all problems lead to complex matrix inversions. For pseudo-
rectangular domains, an alternative method is to map the physical
domain ) onto a rectangular computational domain €’ by introducing
a diffeomorphic transformation (Bellman and Casti, 1971; Zhong and
He, 1998). On the domain (', a differential operator with variable coeffi-
cients takes place of the Laplace operator in Eq. (5). Matrix methods to
solve Eq. (5) on Q' (Johansen and Colella, 1998; Leveque and Li, 1994)
are relatively slow although they are less complex than the approaches
previously described on  whereas Fourier algorithms are irrelevant.

9)

fixed such as

3. Fast reconstruction on pseudo-rectangular domains
3.1. Local dip transformation

In this section, we present a fast horizon reconstruction on a
pseudo-rectangular domain, assuming that either the horizon boundary
or a unique point belonging to the horizon is known. Instead of replac-
ing the Laplace operator in Eq. (5), the right term — div(r,) is modified
by a local dip transformation. The boundary and mean problems can
then be solved by a Fourier algorithm.

We propose to apply on Eq. (1) the diffeomorphic transformation
F which maps the pseudo-rectangular domain () onto a rectangular
domain Q. The transformation is defined by:

I, (%)

vV XEQ, B;] = F(x) = {}-z(x)

]en’. (10)

The gradient field of the function f is consequently relied on a
vector field by a PDE:

VyeQ, V) =p W), (11)
where y denotes the 2-D variable (y1, y»). The 2-D vector p’ is the tangent

of the transformed local dip, which gives the slope of the horizon tangent
plane compared to the axis ¥'; and ', of (). It is expressed by:

p=[1"]"p (12)
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where ] - is the transformation Jacobian matrix defined by:

ay,

) W1 )

o

13
W2 D2y )
0x, 0x,

VXEQ, JX) =

while T and —1 denote respectively the matrix transpose and inverse
operators.

Proof. Derivatives on Q and ' (Bellman and Casti, 1971) are
connected by the relation:

o o
o [ U-1| 5| 4

IRIETI (15)

—1
Multiplying both sides of Eq. (15) by {]fT] leads to Eq. (12). O

3.2. Quadrilateral domain example

A quadrilateral domain is an example of pseudo-rectangular
domain. The diffeomorphic transformation F introduced to map a quad-
rilateral domain onto a rectangular one is a homography defined by a
3 x 3 matrix H = [h;;] (see Fig. 1). The transformation is given by:

hiixy + hopXy + hys
h3iXq + h3pXy + hag | (16)
hy1xq + hyyXy + hys
hsyxy + haoXy + hss

V xEQ, [?Ei; =

2

The four terms of the Jacobian are then:

%(X X)) = (hi1hs; —h31hip)X, + hyghss—hsihys

Oxy 1 (h31%y + hayx, + )

%(xl Xy) = (hg1hs; —hsihy)Xy + hyih3s—hsihys

Ox (h31%y + h3yXy + hss)? ) (17)
%(x X)) = (highs —hsyhi1)X; + highss —hsyhys

Ox, "1 (h31%y + hayx, + )

%(X X)) = (hgahs; —h3yh1)X; + hyphss—hsyhys

ox, "7 (h31%y + h3yXy + hss)?

4. Part-by-part reconstruction

Given a set of input points and its convex envelope I', we propose two
subdivisions of the domain I which brings about a fast reconstruction: a
rectangular subdivision and a quadrilateral subdivision. They consist in
paving the domain I respectively with rectangular subdomains whose
sides are parallel to the axis of the processed data basis and with non-
crossed quadrilateral subdomains. The value of the horizon on the
subdomain boundaries is estimated from the input points by considering
them as corners of rectangles or quadrangles. As the number of corners is
generally higher than the number of input points, the other corners are
particular points estimated for the paving (see Fig. 2). The rectangular
subdivision is the more intuitive method but according to the number
and the location of the input point the reconstruction domain can be
significantly smaller than the entire domain I' and the ratio between
width and height of some rectangles can be disproportionate. In this
paper, we focus on the quadrangular subdivision for which T is totally
reconstructed and the degenerated quadrangles are unusual.

Our part-by-part horizon reconstruction method consists of four
steps:

1. Paving of T with quadrilateral domains Q by considering the input
points as corners of the domains.

2. Reconstruction of the horizon parts on the corners and along the
boundary 09 of Q.

3. Reconstruction of the horizon parts on Q.

4. Reconstruction of the entire horizon on I' by juxtaposition of all
reconstructed horizon parts.

During the first step, the input points are firstly associated by a tri-
angulation, i.e., considered as corners of triangles included in I'. Each
triangle can then be subdivided in three quadrilateral elements by
considering the center of mass as a shared corner (see Fig. 3). As a

F(x") F(x")
® I T T .
e ?(.XP4) ?(XP3)

Qf
]— g1

Fig. 1. Quadrilateral domain Q and rectangular domain ()’ obtained by a homography F.
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Fig. 2. Part-by-part reconstruction domains with respect to a set of input points (red disks): (a) rectangular subdivision; (b) quadrangular subdivision. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

result, the corners of the quadrangles are the input points, the midpoints
of the sides and the centers of mass of the triangles while the boundaries
are the sides and a part of the medians of the triangles. The choice of the
triangulation of Delaunay (1934) which maximizes the smallest angle
of each triangle tends to avoid skinny triangles. The triangulation re-
quires an algorithm whose computational cost O(n log n) or O(n?)
(de Berg et al., 2008; Lee and Schachter, 1980) depends on the number
and the location of the input points. Increasing the number of quadran-
gles theoretically causes a lower computational time to reconstruct a
horizon because the approach is based on efficient Fourier transform al-
gorithms. Nevertheless, the cost of the boundaries' reconstructions as
well as the local dip transformation becomes generally significant and
the horizon quality tends to decrease.

The second step is composed of three phases. Firstly, the sides of the
triangles and their midpoints are reconstructed (see Fig. 4a). Secondly,
the centers of mass of the triangles are determined by estimating the
medians of the triangles and their intersections. As these estimations

Fig. 3. Subdivision of a triangle in three quadrilateral elements by considering the cen- are independent, the values of the intersections are chosen as the
ter of mass as a shared corner. mean values of the three values at the centers of mass (see Fig. 4b).
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Fig. 4. Reconstruction of the corners and the boundaries of the quadrangles during the second step of the part-by-part method. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Reconstruction of an entire horizon with respect to a set of 13 input points (red spheres) by the part-by-part method on the independent sampling grids of the quadrangles
(left) and on the initial sampling grid of the reconstruction domain (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web ver-

sion of this article.)

Finally, the sides of the quadrangles are reconstructed (see Fig. 4c). In a
numerical reconstruction, the number of sampling points of the
reconstructions cannot be chosen independently of each other. In this
way, the discrete lengths of the medians have to be estimated such as
a sampling point matches exactly with their intersection. Moreover,
because of the domain transformation, the discrete lengths of the paired
opposite sides of each quadrangle have to be equal. They can be taken as
the nearest integer to the shortest (Min) or the longest (Max) size as
well as to their arithmetic ( Y_ ) or geometric mean (] ). As the method
is suboptimal, this choice is a compromise between the computational
cost and the data accuracy. To reduce computational cost, each consid-
ered size can be replaced by the closest size which is optimal for a fast
Fourier transform algorithm, for instance the FFTW library (Frigo and
Johnson, 1998).

Fig. 6. Set of quadrangles with respect to 27 input points (red disks). (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of this article.)

(@)

During the third step, a loss of information results from the local
dip transformation because the sampling grids of the quadrangular
and of the rectangular domains are not matched.

In the fourth step, parts of the horizon are estimated on independent
sampling grids of the quadrangles (see Fig. 5) which naturally do not
coincide on their boundaries (see the zoom of Fig. 5). The entire horizon
is then obtained either by matching the sampling grids or by estimating
the horizon on the initial sampling grid of the reconstruction domain
(see Fig. 5). In the first case, the reconstructions have to be resampled
to ensure the same grid on the shared boundaries. The new discrete
lengths are obtained by an iterative algorithm taking into account the
connexity of the quadrangles and the fact that the lengths of the oppo-
site sides have to be equal. These choices can be made during the second
step but lead to a higher computational cost. In the second case, an
interpolation method like the bilinear one can be used.

5. Results

Part-by-part and global optimization methods (Lomask and Guitton,
2006) are evaluated and compared (see Fig. 7) on real seismic data
(1000 x 400 x 350). Complex geometries and convergent structures
of the processed data result in an extremely noisy estimated dip, so a
set of 14 input points are sequentially picked in critical regions (peaks,
basins, etc.) of the horizon to be reconstructed starting from an initial
set of 13 points. The number K of iterations is empirically fixed to
30 to reach convergence of both methods. For the part-by-part method,
the 27 input points lead to 126 quadrangles (see Fig. 6). On each
subdomain, the algorithm is initialized by a constant function

(b)

Fig. 7. Seismic data and reconstructed horizons with respect to a set of input points (red spheres). (a) Global optimization; (b) quadrangular subdivision. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Cross-section of the seismic data and the reconstructed horizons. (a) Global optimization; (b) quadrangular subdivision.

corresponding to the mean value of the four corners. The discrete
lengths of the opposite sides are chosen equal to the nearest integer to
the geometric mean ([]) and the entire horizon is finally estimated
on the initial sampling grid by a bilinear interpolation. For the global op-
timization method, each update term computation through a direction
descent approach requires 300 iterations. The algorithm is initialized
with the function proposed by Lomask and Guitton (2006) and obtained

(a) 13 input points.
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2250 2500

1750

1500
00

!
|
.

time (ms)

(€) 23 input points.
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2000

1750 2250 2500

1500
00

time (ms)

from a horizon reconstructed over the entire domain by assuming that
only one particular input point is known.

5.1. Entire reconstruction

The reconstructed horizons for 27 input points are presented in Fig. 7.
They are compared on a cross-section (see Fig. 8). The part-by-part and

(b) 18 input points.
size (m)

0%)500 1750 2000 2250 2500

time (ms)

(d) 27 input points.

1750

size (m)

0%500 2000 2250 2500

time (ms)

Fig. 9. Part-by-part reconstructed horizon versus number of input points.
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Table 1
Computational times in seconds versus rectangular domain sizes for 27 input points.
Times in parentheses are the times dedicated to the Fourier transform computations.

Size of Q' Part-by-part method Global optimization
Normal size Optimal size

Min 3.3 (141) 2.7 (0.561) 79.1

Max 9.98 (5.47) 6.43 (2.41)

> 5.82 (2.9) 426 (1.56)

I 5.4 (2.54) 3.78 (1.4)

the global optimization horizons are close to the visible horizon, which
proves precision and noise robustness of both methods. Nevertheless,
the global optimization horizon is not perfectly superimposed with the
visible horizon on the left side, so the part-by-part method locally results
in better quality horizons. The cross-sections presented in Fig. 9 depict
the part-by-part horizon around the middle basin. As expected, they
show that the reconstructed horizon and the visible horizon are more
and more close by increasing the number of input points.

The computational cost gain of the part-by-part method is signifi-
cant. For 27 input points, more than 79 s are required by the global op-
timization method against 5.4 s by the part-by-part method. This can
principally be explained by two reasons. Firstly, the cost of the initializa-
tion step proposed by Lomask and Guitton (2006) is higher than the
cost of the entire part-by-part horizon reconstruction without consider-
ing the local dip transformation step. Secondly, the update term is com-
puted in one step in the part-by-part method whereas a large number of
iterations are required in the global optimization one.

For a given number of input points, the non-fixed part of the
part-by-part method computational cost mainly depends on the
cost of the Fourier transform which is determined by the size of the
rectangular domains. The times obtained for 27 points by considering
the normal sizes Min, Max, y_ and [] as well as the associated optimal
sizes (see Section 4) are grouped in Table 1. In all cases, the cost of the
part-by-part method is lower than the cost of the global optimization
method, up to almost 30 times for the optimal shortest size.

5.2. Incremental reconstruction

Adding or displacing vertically one input point causes a
reestimation of the entire horizon with the global optimization method,

Table 2

Computational times in seconds of the part-by-part reconstruction versus number of
input points. Times in parentheses are the times dedicated to the Fourier transform
computations.

Number of input points Entire reconstruction Incremental reconstruction

13 3.8 (1.4) -

18 3.73 (1.4) 0.627 (0.219)
23 3.72 (1.38) 0.603 (0.233)
27 3.78 (1.4) 0.5 (0.184)

so the computational cost of the method does not depend on the number
of input points. On the contrary, a partial (or incremental) reestimation
of the horizon can be carried out with the part-by-part method: only
the quadrangles connected to the added or the displaced point need to
be recalculated (see Fig. 10). The costs of the entire and the incremental
part-by-part reconstruction methods versus the number of points are
presented in Table 2. For a given number of input points ¢, the incremen-
tal reconstruction time is the time required to estimate the horizon with
respect to q points knowing the horizon estimated with respecttoq — 1
points. As expected, the incremental part-by-part reconstruction is ex-
tremely fast compared to the entire reconstruction (less than 1 s) and
its computational time decreases when the number of points increases.
Incremental part-by-part method can consequently be considered as a
real-time method which gives an interactive reconstruction of a seismic
horizon.

6. Conclusion

We have developed a new method to reconstruct a seismic horizon
with respect to a set of input points. Our approach consists in a local
part-by-part reconstruction on quadrilateral subdomains. Presented as
an alternative of a time-consuming global optimization method, it
allows a fast and real-time interactive reconstruction. The key point is
the transformation of the estimated local dip instead of the derivatives
to solve a Poisson equation with a direct Fourier method which guaran-
tees a low computational cost. The horizons obtained for real seismic
data prove accuracy and noise robustness of the method. They are
close to the visible ones and to those reconstructed by the global opti-
mization method. Moreover, the observed computational time gains
are extremely significant for large data volume.

Fig. 10. Part-by-part reconstructed horizon with respect to a set of 27 input points (red spheres). Only the orange quadrangles are recalculated when displacing the yellow point.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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